708. The Crystal and Molecular Structure of 2-Methylthiobenzothiazole.

By P. J. Wheatley.

The crystal and molecular structure of 2-methylthiobenzothiazole has been determined by two-dimensional X-ray diffraction methods. The dimensions of the molecule have been obtained, and are compared with those of comparable molecules.

Recently the structure of 3-methylbenzothiazoline-2-thione was described. ${ }^{1}$ The present paper reports the structure of the isomeric 2-methylthiobenzothiazole (I).

Experimental.-2-Methylthiobenzothiazole. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NS}_{2} . \quad M=\mathbf{1 8 1} \cdot \mathbf{3}$. Monoclinic. $a=13 \cdot 57_{2}$, $b=5 \cdot 49_{1}, c=11 \cdot 52_{0} \AA, \beta=102^{\circ} 52^{\prime} . \quad U=837 \AA^{3} . \quad D_{m}=1 \cdot 44$ (by flotation), $Z=4$. $D_{c}=1 \cdot 439, F(000)=376$. Space group $P 2_{1} / c \quad\left(C_{2 h}^{5}\right.$, No. 14). $\mathrm{Cu}-K_{\alpha}$ radiation ($\lambda 1 \cdot 542 \AA$), single-crystal rotation and Weissenberg photographs.

Multiple-film Weissenberg photographs were taken round $[b]$ and [c]. Relative intensities were estimated visually by comparison with standard strips. No correction was made for absorption ($\mu=51 \cdot 6 \mathrm{~cm} .^{-1}$). 147 h 0 l and $60 h k 0$ reflexions were observed to be non-zero: Each projection was solved from a sharpened Patterson synthesis from which the positions of the two sulphur atoms could be

Table 1.
Fractional atomic co-ordinates.

Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c		
$\mathrm{~S}_{1} \ldots \ldots$.	0.200	-0.163	0.122	C_{2}	$\ldots \ldots$.	0.179	-0.067	0.262	$\mathrm{C}_{6} \ldots \ldots$.	0.416	-0.686	0.350	
$\mathrm{~S}_{2} \ldots \ldots$	0.095	0.182	0.256	C_{3}	$\ldots \ldots$.	0.288	-0.367	0.199	$\mathrm{C}_{7} \ldots \ldots$.	0.359	-0.519	0.396	
$\mathrm{~N}_{7} \ldots \ldots$	0.234	-0.169	0.352	C_{4}	$\ldots \ldots$	0.344	-0.539	0.152	C_{8}	$\ldots \ldots$.	0.297	-0.357	0.322
$\mathrm{C}_{1} \ldots \ldots$.	0.089	0.154	0.412	C_{5}	$\ldots \ldots$.	0.407	-0.696	0.227					

Table 2.
Observed and calculated structure factors for one asymmetric unit.

$h 02$	F_{0}	F_{c}	hol	F_{0}	F_{c}	hol	F_{0}	F_{c}	hol	F_{0}	F_{c}	$h k 0$	F_{o}	F_{c}
0.0.2	$33 \cdot 36$	-32.02	3	8.96	-8.14	11	$2 \cdot 97$	$3 \cdot 32$	11	$2 \cdot 29$	$2 \cdot 00$	0.2.0	11.24	-11.48
1	$5 \cdot 28$	-5.81	4	$5 \cdot 25$	-5.93	12	$2 \cdot 73$	$2 \cdot 91$	12	$2 \cdot 29$	-2.68	1	$6 \cdot 14$	-6.65
2	$0 \cdot 87$	-1.34	5	$6 \cdot 00$	$5 \cdot 66$	13	$2 \cdot 71$	$2 \cdot 53$	13	$1 \cdot 41$	-1.18	2	$1 \cdot 30$	-1.13
3	$12 \cdot 64$	10.56	7	$4 \cdot 64$	-4.86	14	$1 \cdot 69$	-2.35				3	$8 \cdot 32$	$7 \cdot 05$
4	$12 \cdot 87$	$14 \cdot 11$	9	$1 \cdot 49$	$1 \cdot 33$	15	$2 \cdot 39$	$-3 \cdot 30$	1.0.12	$2 \cdot 14$	2.29	4	$1 \cdot 17$	-0.78
5	8.80	$9 \cdot 66$	10	$3 \cdot 05$	$3 \cdot 40$	16	$1 \cdot 36$	-1.69	2	$4 \cdot 74$	$4 \cdot 48$	6	$9 \cdot 80$	10.27
6	1.95	$1 \cdot 12$	11	$2 \cdot 01$	$2 \cdot 03$				4	$3 \cdot 96$	-3.59	8	$1 \cdot 44$	1.75
7	$8 \cdot 26$	-8.08				1.0.6	14.54	$-13 \cdot 10$	5	$2 \cdot 42$	-2.66	9	1.91	-1.85
8	$3 \cdot 48$	$3 \cdot 05$	0.0.10	$2 \cdot 98$	$-3 \cdot 16$	2	$15 \cdot 78$	-15.40	6	1.73	-2.30	10	$6 \cdot 29$	-6.27
9	2.94	$2 \cdot 46$	1	$4 \cdot 96$	-4.22	3	$10 \cdot 07$	9.72	11	$1 \cdot 16$	$1 \cdot 52$			
10	$4 \cdot 47$	-4.93	2	1.79	-0.99	4	$13 \cdot 99$	13.23	12	1.90	$2 \cdot 22$			
11	$4 \cdot 84$	$-5 \cdot 46$	3	$3 \cdot 35$	$2 \cdot 74$	5	6.37	6.46				1.3.0	$4 \cdot 07$	-3.96
12	$3 \cdot 84$	-3.72	4	$3 \cdot 81$	$3 \cdot 67$	8	$4 \cdot 60$	$5 \cdot 32$	1.0.1]	$3 \cdot 04$	-3.19	2	$\stackrel{2 \cdot 23}{1.65}$	-2.49 1.16
14	$3 \cdot 13$	$3 \cdot 91$				9	$3 \cdot 06$	$2 \cdot 87$	2	$1 \cdot 50$	$-1 \cdot 68$	4	1.65 1.32	1.16 1.33
15	1-35	$1 \cdot 63$	${ }_{5}^{3.0 .12}$	$1 \cdot 66$ 3.34	1.23 -3.48	10	$2 \cdot 46$	-3.48	3 4 4	1.01 1.72	0.65 1.30	8	1.32 1.28	$\begin{array}{r}1.33 \\ -1.53 \\ \hline\end{array}$
0.0.4	$8 \cdot 57$	-8.20	6	$1 \cdot 45$	-1.06	11.0.6			6	0.81	-0.53	9	$1 \cdot 92$	$2 \cdot 79$
1	$7 \cdot 95$	$7 \cdot 45$				12.0	$4 \cdot 21$	-8.60	8	$1 \cdot 68$	$1 \cdot 43$	11	$1 \cdot 94$	$-1 \cdot 21$
2	$9 \cdot 09$	$8 \cdot 52$	0.0.14	$1 \cdot 28$	-1.01	13	1.29	-4.81 0.87						
3	$4 \cdot 91$	$3 \cdot 52$	1	$1 \cdot 23$	0.81	14	3.33	$3 \cdot 11$	$h k 0$			0.4.0	$5 \cdot 29$	-5.44
4	$3 \cdot 34$	-2.82				15	$\stackrel{3}{1 \cdot 27}$	$\stackrel{1}{1.72}$	1.0 .0	$5 \cdot 92$	$5 \cdot 99$		$2 \cdot 33$	-2.43
5	11.77	-13.28	$1.0 . \overline{2}$	$3 \cdot 11$	-2.98	16	1.04	-0.71	2	$20 \cdot 61$	-21.36	2	$3 \cdot 35$	$3 \cdot 32$
6	$4 \cdot 21$	-4.80	2	8.81	9.21				3	$3 \cdot 59$	-3.80	3	$2 \cdot 00$	$2 \cdot 51$
7	3.79	$4 \cdot 15$	3	$10 \cdot 65$	-9.67				4	11.02	-11.09	4	$2 \cdot 81$	-2.44
12	3.06	$3 \cdot 20$	4	$2 \cdot 61$	-1.74	1.0 .8	4.69 3.89	4.20 -3.23	5	1.79 8.63	1.71 -8.85	6	$2 \cdot 54$	$1 \cdot 84$
14	1.84 0.85	-2.22 -1.01	8	6.39 1.31	7.71 0.54	5	1.79	0.34	8	6.04	- 6.14	10	3.08	$-3 \cdot 12$
			9	$3 \cdot 28$	-4.04	6	1.99	-1.98	10	$10 \cdot 13$	$10 \cdot 35$			
0.0.6	7.28	-5.93	10	$6 \cdot 97$	-6.46	7	$6 \cdot 85$	-6.23	11	$5 \cdot 31$	$5 \cdot 07$	1.5 .0	2.77	$3 \cdot 10$
1	$5 \cdot 51$	$-5 \cdot 45$	13	$1 \cdot 45$	-1.97	8	6.36	-6.51	13	$2 \cdot 35$	$-2 \cdot 16$	2	1.81	-1.77
2	$2 \cdot 65$	$2 \cdot 75$	14	2.71	-2.43	0	$4 \cdot 51$	4.87	16	$1 \cdot 67$	-1.97	3	$5 \cdot 84$	-5.36
3	$1 \cdot 68$	$1 \cdot 42$	16	$3 \cdot 73$	$3 \cdot 96$	11	$1 \cdot 98$	1.94				4	$1 \cdot 32$	-1.40
4	$3 \cdot 26$	$3 \cdot 39$				11	$1 \cdot 67$	$1 \cdot 71$	1.1.0	9.09	-11.04	6	$1 \cdot 10$	1.09
6	$5 \cdot 44$	$6 \cdot 15$	1.0.4	7.07	8.27	12	$3 \cdot 62$	$3 \cdot 45$	3	$33 \cdot 98$	35.68	7	$2 \cdot 52$	$2 \cdot 40$
7	6.80	$7 \cdot 39$	2	17.50	18.11	13	$1 \cdot 42$	-1.35	4	$10 \cdot 42$	11.00	10	0.95	0.53
8	$2 \cdot 30$	-3.22	3	$5 \cdot 50$	-5.33				6	$6 \cdot 68$	-6.59	11	$1 \cdot 40$	$1 \cdot 06$
9	$3 \cdot 76$	-3.65	4	13.53	-12.97	1.0.10	$1 \cdot 68$	1.09	7	11.44	-11.72			
10	$2 \cdot 81$	-3.09	5	$12 \cdot 63$	-10.93	3	1.45	-0.60	8	$2 \cdot 56$	-2.21			
11	$1 \cdot 41$	-1.48	6	$5 \cdot 79$	-6.55	4	$1 \cdot 68$	$-1 \cdot 83$	9	$1 \cdot 17$	-1.46	0.6.0	$5 \cdot 64$	$5 \cdot 42$
			7	$5 \cdot 26$	6.87	5	$1 \cdot 33$	$1 \cdot 60$	11	$3 \cdot 69$	-3.12	1	$1 \cdot 23$	$1 \cdot 09$
0.0.8	11.24	$9 \cdot 91$	8	1.89	$2 \cdot 97$	6	$5 \cdot 17$	$5 \cdot 22$	13	$5 \cdot 22$	4.95	2	0.99	-1.11
1	$5 \cdot 81$	$5 \cdot 01$	9	$4 \cdot 08$	-3.65	7	$3 \cdot 87$	$2 \cdot 72$	14	$1 \cdot 58$	1.82	6	$1 \cdot 51$	-1.66
2	$3 \cdot 73$	-3.79	10	$2 \cdot 94$	$3 \cdot 36$	9	$4 \cdot 33$	-4.94	15	$1 \cdot 17$	$1 \cdot 31$	7	$1 \cdot 36$	-1.63

[^0]located. Successive Fourier syntheses gave the positions of the lighter atoms, and each projection was refined by difference syntheses. The scattering factors used were those of Berghuis et al. ${ }^{2}$ for the carbon and nitrogen atoms, and that of Tomiie and Stam ${ }^{3}$ for the sulphur atoms. Hydrogen atoms were ignored. An isotropic temperature factor $B=4.47 \AA^{2}$ proved adequate for each projection. The final agreement index was $R=10 \cdot 2 \%$ for the $h 0 l$

Fig. 1 a.

Fig. lb.
Fig. 1. (a) Projection of the contents of the unit cell down [b].
(b) Projection of the contents of the unit cell down [c].
(Contours are drawn at equal arbitrary intervals.)
and $R=\mathbf{7 \cdot 2} \%$ for the $h k 0$ projection. These agreement indices refer to the observed terms only.

Results.-The co-ordinates of the atoms are given in Table 1, and the observed and calculated structure factors in Table 2. Figs. 1 (a and b) show the final Fourier maps of the $h 0 l$ and the $h k 0$ projection, respectively. Fig. 2 shows the numbering of the atoms, the bond lengths, and the bond angles. For two-dimensional analyses the usual methods

[^1]6 в
for assessing accuracy are unreliable, especially when one of the projections is poorly resolved; but it is felt that the $C-S$ distances are valid to $\pm 0.03 \AA$ and the others to $\pm 0.05 \AA$. The bond lengths agree well with expected values ${ }^{4}$ and with those found in 3-methylbenzothiazoline-2-thione. ${ }^{1}$ There are four C-S bonds in the molecule, all of which are formally single bonds. They show, however, some interesting differences, though these differences probably lie within the limits of the experimental error. The bond $\mathrm{C}_{1}-\mathrm{S}_{2}$ is a true single bond with a length ($1.824 \AA$) agreeing with the estimates by Huggins ${ }^{5}$ and Abrahams. ${ }^{6}$ The other $\mathrm{C}-\mathrm{S}$ bonds are all shortened by conjugation, strain, and possibly other effects, but the lengths agree well with those listed by Abrahams, ${ }^{6}$ and those found in 4-methyl-1,2-dithiacyclopentene-3-thione. ${ }^{7}$

Fig. 2. The numbering of the atoms, the bond lengths, and the interatomic angles.

The molecule is planar within the limits of experimental error, with the exception of the S-methyl group, which lies $0.19 \AA$ out of the molecular plane. The intermolecular distances are normal and there are no close approaches.

I thank Dr. R. A. Baxter and K. N. Ayad of Monsanto Chemicals Ltd., Ruabon, for supplying the sample.

Monsanto Research S.A., Binzstrasse 39, Zürich 3/45, Switzerland.
[Received, March 14th, 1962.]
${ }^{4}$ Sutton et al., "Tables of Interatomic Distances," Chem. Soc. Special Publ., No. 11.
${ }^{5}$ Huggins, J. Amer. Chem. Soc., 1953, 75, 4126.
${ }^{6}$ Abrahams, Quart. Rev., 1956, 10, 407.
7 Jeffrey and Shiono, Acta Cryst., 1959, 12, 447.

[^0]: ${ }^{1}$ Wheatley, $J ., 1961,4379$.

[^1]: ${ }^{2}$ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ${ }^{3}$ Tomiie and Stam, Acta Cryst., 1958, 11, 126.

